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Boundary conditions at rigid boundari

Staircase-shaped boundary

el

When the grid is not aligned with the model boundary, boundary conditions
become difficult to prescribe.
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Boundary conditions at rigid boundaries

Staircase-shaped boundary
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When the grid is not aligned with the model boundary, boundary conditions
become difficult to prescribe.

o Finite elements? Expensive...
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Boundary conditions at rigid boundaries

Staircase-shaped boundary

\/Y\/Y<

When the grid is not aligned with the model boundary, boundary conditions
become difficult to prescribe.

o Finite elements? Expensive...

o Better interpolation in frames of FD? May be instable...
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Boundary conditions at rigid boundaries

Staircase-shaped boundary

\/Y\/Y)<

When the grid is not aligned with the model boundary, boundary conditions
become difficult to prescribe.

o Finite elements? Expensive...

e Better interpolation in frames of FD? May be instable...

o Variational methods ? We can try...
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Discretized derivatives

Boundary conditions are introduced into the model by a particular discretization

of operators near the boundary.

To avoid instabilities, we control both BC and their approximation.

ul

Particular discretisation for derivatives near the boundary
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Discretized derivativ

Boundary conditions are introduced into the model by a particular discretization

of operators near the boundary.

Particular discretisation for derivatives near the boundary

To avoid instabilities, we control both BC and their approximation.

Integer node

Half-integer nodes
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where «; and a9 are the control coefficients.

Derivatives are allowed to change their properties near the boundaries in order to

find the best fit with requirements of the model and data.

)

Christine & Eugene Kazantsev

Optimizing Lateral Boundary Conditions

page 4 of 19



Nucleus for European Modelling of the Ocean (NEMO):

Rectangular Box Configuration

1 o
30° x 20° rectangle with 7 resolution and 5 z levels.

120 x 80 X 5 nodes in (z, y, z) coordinates, 64 time steps per day.
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wo
(U1, w)Lateral Boundary = 0 (Impermeability and Free-Slip conditions)
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Single Gyre Forcing, Impermeability and Free-Slip conditions

=01 =005 0 005 01 015 02 01 005 0 006 01 o5 0z 02 03

SSH on the aligned grid SSH on the 45° rotated grid.
XN X /X

\/Y\/Y<
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Nucleus for European Modelling of the Ocean (NEMO):

Rectangular Box Configuration

1 o
30° x 20° rectangle with 7 resolution and 5 z levels.

120 x 80 X 5 nodes in (z, y, z) coordinates, 64 time steps per day.
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0z wg N hz1po B =1, Single gyre

(U1, w)Lateral Boundary = 0 (Impermeability and Free-Slip conditions)
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Control coefficients
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Data Assimilation

The model: z(t) = Mg +(2(0), @) with = = (u,v,T, S, ssh)T

Cost function J

J = 107*(|2(0) — zpgrll® + l — bgrll?) +

ar
+ / t //(u — Upef)® + (v — vpef)® + (ssh — sshyep)®dzdydt
t=0

<

e Joint control of the initial point x(0) (interpolation errors) and the set of ¢y

o Artificially generated data by the same model on the aligned grid;
o Data Assimilation over the 50 days window;

o Analysis of the solution on the 8 years interval.

e Minimization is performed by M1QN3 (JC Gilbert, C.Lemarechal);
e Adjoint is generated by Tapenade (Ecuador team, INRIA).
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Single Gyre Control: 45° rotation, SSH

Reference, Optimal and Conventional BC 800 days later

—— —
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Reference SSH Rotated grid conventional BC SSH

V'

016 01 005 O 005 01 01 02 08

Rotated grid Optimal BC SSH

Christine & Eugene Kazantsev Optimizing Lateral Boundary Conditions

page 10 of 19



Double Gyre forcing

Reference,

Aligned Grid Conventional BC, Rotated (30°) Grid

Optimized BC, Rotated (30°) Grid
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Control coef
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Control coefficients: 45° rotation
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"Optimal" configuration
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Puc.: 45° rotated grid
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"Optimal" configuration
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Puc.: 45° rotated grid
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"Optimal" configuration
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"Optimal" configuration

74
@ Free-slip condition on a curvilinear /) T"
boundary w|png = VT? y"/
o Optimal boundary is curvilinear " ) T"/
with R = —h/+/2 a T’/

Variable Rgoo :—h S Rg[)o S 5h.

The Radius depends on the grid resolution h.
Does this curvilinear boundary remains optimal on different resolutions? J
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Single Gyre Control: 45° rotation, 1°/2 resolution

Reference, Optimal and Conventional BC 800 days later
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Rotated grid constant R = —h/+/2 BC
SSH
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Single Gyre Control: 45° rotation, 1°/8 resolution

Reference, Optimal and Conventional BC 800 days later

— — —
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Reference SSH Rotated grid conventional BC SSH

Rotated grid, constant R = —h/+/2 BC
SSH
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ORCA-2 Model

o NEMO, Global ocean model, 2° resolution, 31 layer;

o ECMWF data issued from Jason-1 and Envisat altimetric missions and
ENACT/ENSEMBLES data banque;

e Data Assimilation during interval;

o Analysis of the distance “model-observations"on interval

Distance “model-observations"

Evolution of the distance Model-Observations

Distance x 103
110.00 Origimal
105.00
100.00 OpLIC

Opt BCz

500 1000 1500 2000 "Ml
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ORCA-2 Model

1

o NEMO, Global ocean model, 2° resolution, 31 layer;

o ECMWF data issued from Jason-1 and Envisat altimetric missions and
ENACT/ENSEMBLES data banque;

Data Assimilation during 10 days interval;

o Analysis of the distance “model-observations"on | month interval

Opt.IC:SSH Jan,31 00hr 0pt.BCz.SSH Jan,31 00hr

80K 75K 706 63W 60 SO8 SOF 45 40W 35W 30W 25K 20M 15K

=1 =08 -08 -07 -05 -04 -03 -02 0

Optimal Initial Conditions.
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Conclusion

Boundary Conditions influence is

o Optimal BCs allows committed by the discretization

o The model to the reference one with optimal BC

e Data assimilation allows to get an of the
boundary

y

As well as for any adjoint parameter estimation

e The control may violate the model physics;
o The physical meaning of the optimal boundary is difficult to understand;
o The set of a is not unique;

o The problem of identifiability is not addressed yet;

o The problem of stability is not even posed.

Consequently:

It is not a parameter estimation study, but

e a way to compensate model errors

e showing the most influent parameter.
o
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